Transformations of Functions

Transformers

ACTIVITY 8 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 8-1

In Items 1–4, identify the transformation from the graph of $f(x) = x^3$ to the graph of g(x).

- **1.** $g(x) = x^3 + 11$
- **2.** $g(x) = x^3 4$
- 3. $g(x) = x^3 + 0.1$
- 4. $g(x) = -2 + x^3$
- 5. The graph of $f(x) = x^2$ is translated 9 units down to create the graph of g(x). Which of the following is the equation for g(x)? A. $g(x) = x^2 + 9$

B.
$$g(x) = x^2 - 9$$

C. $g(x) = (x+9)^2$

D.
$$g(x) = (x - 9)^2$$

In Items 6 and 7, each graph shows a vertical translation of the graph of f(x) = x. Write an equation to describe the graph. Identify the zeros of each function.

6. 80 60 40 20 -60 -40 -20 20 40 60 80 -80_ -20 40 60 80 7. 80 60 40 20 60_ -40 -20 20 40 60 80 -80 -20 -40 -60 80

For Items 8 and 9, determine the equation of the function described by each of the following transformations of the graph of $f(x) = 3^x$.

ACTIVITY 8

continued

- 8. Translated 15 units down
- 9. Translated 2.1 units up
- **10.** An air conditioner costs \$450 plus \$40 per month to operate.
 - **a.** Write a function that describes the total cost of buying and operating the air conditioner for *x* months.
 - **b.** Use your calculator to graph the function.
 - **c.** What is the *y*-intercept? What does it represent?
 - **d.** How would the function change if the price of the air conditioner were reduced to \$425? How would the graph change?

Given that g(x) = f(x) + k, with $k \neq 0$, determine whether each statement is always, sometimes, or never true.

- **11.** The graph of g(x) is a vertical translation of the graph of f(x).
- **12.** The graphs of f(x) and g(x) are both lines.
- **13.** The graph of f(x) has the same *y*-intercept as the graph of g(x).
- 14. Caitlin drew the graph of $f(x) = x^2$. Then she translated the graph 6 units up to get the graph of g(x). Next, she translated the graph of g(x) 8 units down to get the graph of h(x). Which of these is an equation for h(x)?
 - **A.** $h(x) = x^2 + 14$ **B.** $h(x) = x^2 + 2$
 - **c.** $h(x) = x^2 + 2$
 - **D.** $h(x) = x^2 14$

Transformations of Functions Transformers

Lesson 8-2

In Items 15–18, identify the transformation from the graph of $f(x) = 2^x$ to the graph of g(x).

- **15.** $g(x) = 2^x 3$
- **16.** $g(x) = 2^{(x-3)}$
- **17.** $g(x) = 2^x + 4$
- **18.** $g(x) = 2^{(x+4)}$
- 19. The graph of which function is a translation of the graph of f(x) = x² five units to the right?
 A. g(x) = x² 5
 B. g(x) = (x + 5)²
 - **C.** $g(x) = (x 5)^2$
 - **D.** $g(x) = x^2 + 5$

Write the equation of the function described by each of the following transformations of the graph of $f(x) = x^3$.

- **20.** Translated 7 units up
- **21.** Translated 4 units down
- **22.** Translated 2 units right
- 23. Translated 5 units down
- 24. Translated 3 units left
- **25.** The figure shows the graph of $f(x) = x^4$ and the graph of g(x). Write an equation for the graph of g(x).

Without graphing, describe the transformation from the graph of $f(x) = x^2$ to the graph of g(x).

- **26.** $g(x) = (x 7)^2 + 1$
- **27.** g(x) = f(x+4)
- **28.** $g(x) = (x+9)^2 0.2$
- **29.** g(x) = f(x-2) 3
- **30.** The graph of f(x) is shown below. Which of the following is a true statement about the graph of g(x) = f(x + 3)?

- **A.** The *x*-intercept of g(x) is (3, 0).
- **B.** The *x*-intercept of g(x) is (-3, 0).
- **C.** The *y*-intercept of g(x) is (0, 3).
- **D.** The *y*-intercept of g(x) is (0, -3).

MATHEMATICAL PRACTICES Model with Mathematics

- 31. In 2011, the ticket price for entrance to a state fair was \$12. Each ride had an additional \$4.00 fee. In 2012, the entrance ticket cost \$15 and the rides remained \$4.00 each.
 - **a.** Write a function *f*(*x*) for the cost of visiting the fair and riding *x* rides in 2011.
 - **b.** Write a function *g*(*x*) for the cost of visiting the fair and riding *x* rides in 2012.
 - **c.** What transformation could you use to obtain the graph of g(x) from the graph of f(x)?
 - **d.** What transformation could you use to obtain the graph of f(x) from the graph of g(x)?