Transformations of Functions

 Transformers
ACTIVITY 8 PRACTICE

Write your answers on notebook paper. Show your work.

Lesson 8-1

In Items 1-4, identify the transformation from the graph of $f(x)=x^{3}$ to the graph of $g(x)$.

1. $g(x)=x^{3}+11$
2. $g(x)=x^{3}-4$
3. $g(x)=x^{3}+0.1$
4. $g(x)=-2+x^{3}$
5. The graph of $f(x)=x^{2}$ is translated 9 units down to create the graph of $g(x)$. Which of the following is the equation for $g(x)$?
A. $g(x)=x^{2}+9$
B. $g(x)=x^{2}-9$
C. $g(x)=(x+9)^{2}$
D. $g(x)=(x-9)^{2}$

In Items 6 and 7, each graph shows a vertical translation of the graph of $f(x)=x$. Write an equation to describe the graph. Identify the zeros of each function.
6.

7.

For Items 8 and 9, determine the equation of the function described by each of the following transformations of the graph of $f(x)=3^{x}$.
8. Translated 15 units down
9. Translated 2.1 units up
10. An air conditioner costs $\$ 450$ plus $\$ 40$ per month to operate.
a. Write a function that describes the total cost of buying and operating the air conditioner for x months.
b. Use your calculator to graph the function.
c. What is the y-intercept? What does it represent?
d. How would the function change if the price of the air conditioner were reduced to $\$ 425$? How would the graph change?

Given that $g(x)=f(x)+k$, with $k \neq 0$, determine whether each statement is always, sometimes, or never true.
11. The graph of $g(x)$ is a vertical translation of the graph of $f(x)$.
12. The graphs of $f(x)$ and $g(x)$ are both lines.
13. The graph of $f(x)$ has the same y-intercept as the graph of $g(x)$.
14. Caitlin drew the graph of $f(x)=x^{2}$. Then she translated the graph 6 units up to get the graph of $g(x)$. Next, she translated the graph of $g(x) 8$ units down to get the graph of $h(x)$. Which of these is an equation for $h(x)$?
A. $h(x)=x^{2}+14$
B. $h(x)=x^{2}+2$
C. $h(x)=x^{2}-2$
D. $h(x)=x^{2}-14$

ACTIVITY 8

Lesson 8-2

In Items 15-18, identify the transformation from the graph of $f(x)=2^{x}$ to the graph of $g(x)$.
15. $g(x)=2^{x}-3$
16. $g(x)=2^{(x-3)}$
17. $g(x)=2^{x}+4$
18. $g(x)=2^{(x+4)}$
19. The graph of which function is a translation of the graph of $f(x)=x^{2}$ five units to the right?
A. $g(x)=x^{2}-5$
B. $g(x)=(x+5)^{2}$
C. $g(x)=(x-5)^{2}$
D. $g(x)=x^{2}+5$

Write the equation of the function described by each of the following transformations of the graph of $f(x)=x^{3}$.
20. Translated 7 units up
21. Translated 4 units down
22. Translated 2 units right
23. Translated 5 units down
24. Translated 3 units left
25. The figure shows the graph of $f(x)=x^{4}$ and the graph of $g(x)$. Write an equation for the graph of $g(x)$.

Without graphing, describe the transformation from the graph of $f(x)=x^{2}$ to the graph of $g(x)$.
26. $g(x)=(x-7)^{2}+1$
27. $g(x)=f(x+4)$
28. $g(x)=(x+9)^{2}-0.2$
29. $g(x)=f(x-2)-3$
30. The graph of $f(x)$ is shown below. Which of the following is a true statement about the graph of $g(x)=f(x+3)$?

A. The x-intercept of $g(x)$ is $(3,0)$.
B. The x-intercept of $g(x)$ is $(-3,0)$.
C. The y-intercept of $g(x)$ is $(0,3)$.
D. The y-intercept of $g(x)$ is $(0,-3)$.

MATHEMATICAL PRACTICES

Model with Mathematics
31. In 2011, the ticket price for entrance to a state fair was $\$ 12$. Each ride had an additional $\$ 4.00$ fee. In 2012, the entrance ticket cost $\$ 15$ and the rides remained $\$ 4.00$ each.
a. Write a function $f(x)$ for the cost of visiting the fair and riding x rides in 2011.
b. Write a function $g(x)$ for the cost of visiting the fair and riding x rides in 2012.
c. What transformation could you use to obtain the graph of $g(x)$ from the graph of $f(x)$?
d. What transformation could you use to obtain the graph of $f(x)$ from the graph of $g(x)$?

