OLSEN – ACTIVITY 8 NOTES

Name _

Period

Learning Targets:

- Identify the effect on the graph of replacing f(x) by f(x) + k.
- Identify the effect on the graph of replacing f(x) by f(x + k).
- Identify the transformation used to produce one graph from another.

	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5
Parent Function	$f(x) = 2^x$	$f(x) = x^2$	$f(x) = x^3$	f(x) = x	$f(x) = \sqrt{x}$
A.	g(x) = x + 4	$g(x) = x^2 + 4$	$g(x) = x^3 + 4$	g(x) = x + 4	$g(x) = \sqrt{x} + 4$
B.	h(x) = (x+4)	$h(x) = (x+4)^2$	$h(x) = (x+4)^3$	h(x) = x+4	$h(x) = \sqrt{x+4}$
C.	j(x) = x - 4	$j(x) = x^2 - 4$	$j(x) = x^3 - 4$	j(x) = x - 4	$j(x) = \sqrt{x} - 4$
D.	k(x) = (x - 4)	$k(x) = (x-4)^2$	$k(x) = (x-4)^3$	k(x) = x - 4	$k(x) = \sqrt{x-4}$

The highlighted row is what we refer to as the **parent functions**. Parent functions are the most basic function of a particular category or type. Below you will find a list of the most common parent functions and their key attributes.

1. Make use of structure. Before you construct the table below, make a conjecture about the graph of g(x), h(x), j(x), and k(x) compared to its parent function f(x).

_	Conjecture: How will each graph differ from the parent function?
A.	
B.	
C.	
D.	

2. Test your conjecture by using a graphing calculator to complete the table below and then graph g(x), h(x), j(x), and k(x).

x	f(x) =	g(x) =	h(x) =	j(x) =	k(x) =

3. Revisit your original conjectures about g(x), h(x), j(x), and k(x) and revise if necessary. How does each graph differ from the graph of the parent function f(x)?

	Revised Conjectures: How does each graph differ from the parent function?
A.	
B.	
C.	
D.	

A change in the position, size, or shape of a graph is a	. The changes to the graphs			
of $g(x)$ and $j(x)$ are examples of transformations called				
which shift the graph or and preserves the shape of the graph. The changes to the				
graphs of $h(x)$ and $k(x)$ are examples of transformations called				
- which shift the graph or and also preserves the shape of				

the graph.

	Transformation Description	Function Notation
g(x)		
h(x)		
j(x)		
<i>k</i> (<i>x</i>)		

- 4. In the figure, the graphs of g(x) and h(x) are vertical translations of the graph of $f(x) = 2^x$.
 - a. Write the equation for g(x).
 - b. Write the equation for h(x).

c. Without using a graphing calculator, sketch the graph of g(x) = f(x - 8).

Ray's Gym charges an initial sign-up fee of \$25.00 and a monthly fee of \$15.00.

- 5. Reason abstractly. Write a function that describes the gym's total membership fee for *x* months.
- 6. Graph the function you wrote in Item 5 on the grid below. Label three points on the graph.

- 7. Identify the *y*-intercept. What does the *y*-intercept represent?
- **8.** How would the function change if the initial sign-up fee were increased by \$5.00? How would the graph change?

Make sense of problems. Julio went to a theme park in July. He paid \$15 to enter the park and \$3.00 for each ride. He went on x rides.

- 9. Write a function that describes the total cost of Julio's trip to the theme park.
- Julio went back to the theme park in September. The entrance fee was the same and each ride still cost \$3.00. However, this time Julio went 5 more rides. Use your function from Item 9 to describe Julio's second trip.
- 11. How does the equation for Julio's second trip to the park change the graph of the first trip?
- 12. What kind of transformation describes the change from the first graph to the second graph?
- **13.** Julio went to the park again in October and went on 8 fewer rides than he did in July. Use your function from Item 16 to describe Julio's third trip. How does this change the initial graph?
- 14. Julio goes to the park again in November. Now it is the off-season and the entrance is \$10 less than it was in July. He goes on the same number of rides as he did in July. Write a function to describe Julio's fourth trip. How does the graph of the initial trip change this new situation?

15. Without graphing, describe the transformation from the graph of $f(x) = x^2$ to the graph of $g(x) = x^2 + 7$.

16. Suppose f(x) = x - 2. Describe the transformation from the graph of f(x) to the graph of g(x) = x + 3.

17. The y-intercept of a function f(x) is (0, b). What is the y-intercept of f(x) + k?

18. Without graphing, describe the transformation from the graph of $f(x) = x^2$ to the graph of g(x).

- a. $g(x) = (x+4)^2$
- b. g(x) = f(x 7)
- c. $g(x) = (x-2)^2 + 5$
- d. $g(x) = (x+9)^2 1$

19. The function $f(x) = x^2$ and another function g(x), are graphed below. Write the equation for g(x).

20. The *x*-intercept of a function f(x) is (a, 0). What is the *x*-intercept of f(x + k)?

21. Without graphing, explain how the graph of $y = (x - 4)^3$ is realted to the graph of $y = (x + 4)^3$.

- 22. The membership fee at Gina's Gym is given by the function g(x) = 15x + 32, where x is the number of months.
 - a. How do the fees at Gina's Gym compare to those at Ray's Gym in Item 5?
 - b. Without graphing, describe how the graph of g(x) compares to the graph of f(x).

ACTIVITY 8 HW: page 119 – 120, "ACTIVITY 8 PRACTICE" problems 1 – 31.

1.	2.
3.	4.
5.	6.
7.	8.
9.	10.
11.	12.
13.	14.
15.	16.
17.	18.
19.	20.
21.	22.
23.	24.
25.	26.
27.	28.
29.	30.
31.	

ACTIVITY 8 EXTRA PRACTICE

In Items 1 – 8, identify the transformation from the graph of f(x) = |x| to the graph of g(x).

- 1. g(x) = |x| + 2
- 2. g(x) = |x 3|
- 3. g(x) = |x| 1
- $4. \quad g(x) = |x+8|$
- 5. g(x) = |x-5| + 6
- 6. g(x) = |x+11|+1
- 7. g(x) = |x-3| 3
- 8. g(x) = |x+2| 4.7

For Items 9 – 16, write the equation g(x) of the function described by each of the following transformations of the graph of $f(x) = \sqrt[3]{x}$.

- 9. Translated 5 units to the right of f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 10. Translated 7 units down from f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 11. Translated 1 unit left, and 6 units down from f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 12. Translated 8 units left of f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 13. Translated 9 units up, and 13 units to the right of f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.

- 14. Translated 2 units up from f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 15. Translated 7 units left, and 1 unit up from f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 16. Translated down 3 units, and 9 units right from f(x).
 - a. Write the equation.
 - b. Write the equation in function notation.
- 17. The figure shows the graph of $f(x) = x^4$ and the graph of g(x). Write an equation for the graph of g(x).

18. The figure shows the graph of $f(x) = -\sqrt{x}$ and the graph of g(x). Write an equation for the graph of g(x).

19. The figure shows the graph of $f(x) = 5^x$ and the graph of g(x). Write an equation for the graph of g(x).

- 20. Caitlin put \$5,000 down on a \$20,000 car and has to make \$350 payments in order to pay off the balance on the car. Write a function that describes the amount of money Caitlin has left to pay on her car.
- 21. Jeff put \$7,000 down on a \$20,000 car and also has to make \$350 payments in order to pay off the balance on the car. Write a function that describes the amount of money Jeff has left to pay on his car.
- 22. How does the equation for Jeff's balance change the graph of Caitlin's balance?
- 23. If Caitlin made *x* payments, and Jeff made 3 less payments than Caitlin, write a new function that describes the amount of money Jeff has left to pay on his car.
- 24. How does the new equation for Jeff's balance change the graph of Caitlin's balance?
- 25. Isaias drew the graph of $f(x) = x^3$. Then, he translated the graph 4 units down to get the graph of g(x). Next, he translated the graph 7 units left and 6 units up to get the graph of h(x). What is the equation of h(x)?

WANT EVEN MORE EXTRA PRACTICE?

Page 114, "LESSON 8-1 PRACTICE" problems 17 – 23.

Page 118, "LESSON 8-2 PRACTICE" problems 16 – 21.

